GLYCOLYSIS AND GLUCONEOGENESIS

Kristina Mlinac Jerković kristina.mlinac.jerkovic@mef.hr

Major pathways of glucose utilization

HO —ÇH₂ (a) Preparatory phase **Phosphorylation of glucose** and its conversion to Glucose glyceraldehyde 3-phosphate 1 first priming reaction hexokinase P-0-CH₂ **Glucose 6-phosphate** phosphohexose OH isomerase Fructose 6-phosphate phospho-ÓН second priming reaction CH₂—O—P Fructose 1,6-bisphosphate cleavage of 6-carbon 4 3 OH H sugar phosphate to aldolase two 3-carbon sugar phosphates Glyceraldehyde 3-phosphate Dihydroxyacetone phosphate

Enzyme hexokinase: 4 isoenzymes (I, II, III i IV) – in the liver the main isoenzyme is hexokinase IV (glucokinase), while other tissues have isoenzymes I, II and III

(5)

1,3-Bisphosphoglycerate **ADP**

3-Phosphoglycerate

$$\Delta G^{\prime \circ} = -18.5 \text{ kJ/mol}$$

Overall equation for glycolysis:

glucose +
$$2NAD^+ + 2ADP + 2P_i$$

 \rightarrow 2 pyruvate + $2NADH + 2H^+ + 2ATP + $2H_2O$$

GLUCONEOGENESIS

- glucose synthesis from noncarbohydrate precursors:
 pyruvate, lactate, glucogenic amino acids, glycerol
- takes place mainly in the liver (also the renal cortex and intestinal cells)
- glucose is major or sole fuel source for human brain, erythrocytes, testes, renal medulla (brain needs approx. 120 g of glucose daily)
- gluconeogenesis and glycolysis are not identical pathways running in opposite directions; 7 of 10 glycolytic reactions are reversible and occur in gluconeogenesis; 3 irreversible glycolytic reactions are bypassed in gluconeogenesis by a separate set of enzymes

Carboxylation-decarboxylation sequence "activates" pyruvate and facilitates formation of phosphoenolpyruvate. (Similar reaction sequence of carboxylation-decarboxylation is used for activation of acetyl-CoA for fatty acid biosynthesis.)

Pyruvate carboxylase requires coenzyme biotin (acts as a carrier of activated HCO_3^-). The same reaction is used to replenish intermediates of citric acid cycle (anaplerotic reactions)!

^{*}Glucose 6-phosphatase is not expressed in muscle and brain tissue!

Overall equation for gluconeogenesis:

2 pyruvate + 4 ATP + 2 GTP + 2 NADH + 6
$$H_2O \rightarrow$$
 glucose + 4 ADP + 2 GDP + 6 P_i + 2 NAD⁺ + 2 H⁺

CORI CYCLE; GLUCOSE-ALANINE CYCLE; REGULATION OF GLYCOLYSIS AND GLUCONEOGENESIS

Noncarbohydrate precursors for gluconeogenesis

- Pyruvate entry point for lactate and alanine
- Oxaloacetate entry point for some aminoacids
- Dihydroxyacetone phosphate entry point for glycerol

PYRUVATE AND ALANINE AS GLUCONEOGENESIS SUBSTRATES

- GLUCOSE-ALANINE CYCLE

- Between meals, or during fasting, or during muscle exercise, muscle proteins are degraded to amino acids which are converted to glutamate by transamination reaction.
- Pyruvate produced in glycolysis is converted to **alanine** by a transamination reaction involving glutamate.

alanine +
$$\alpha$$
-ketoglutarate \longrightarrow pyruvate + glutamate

- Glucose-alanine cycle ensures availability of gluconeogenesis precursors.
- Also, it serves as a mechanism for transporting amino acid nitrogen to the liver (link to urea cycle).

CORI CYCLE – UTILISATION OF LACTATE AS GLUCONEOGENESIS SUBSTRATE

- During strenuous exercise, lactate is produced anaerobically in muscle cells.
- After passing through blood to the liver, lactate is converted to glucose by gluconeogenesis.

Glycerol as a substrate for gluconeogenesis

- Glycerol is a product of fat metabolism in adipose tissue.
- In the liver, glycerol is used for gluconeogenesis due to catalytic activity of two enzymes: glycerol kinase and glycerol-3-phosphate-dehydrogenase

Glucogenic amino acids are converted either to pyruvate or citric acid cycle intermediates and serve as gluconeogenesis precursors

Pyruvate – alanine, cysteine, glycine, serine, triptophane

Succinyl-CoA – isoleucine, methionine, threonine, valine

α-ketoglutarate – arginine, glutamate, glutamine, histidine, prolin

Fumarate – phenylalanine, tyrosine

Oxaloacetate – asparagine, aspartate

COORDINATED REGULATION OF GLYCOLYSIS AND GLUCONEOGENESIS

- Glycolysis and gluconeogenesis cannot proceed simultaneously, otherwise the energy would be dissipated (futile cycle); they are reciprocally regulated.
- Glycolysis and gluconeogenesis proceed as substrate cycles, sharing 7 (reversible) of 10 reactions, and are precisely and coordinately regulated.
- Allosteric effectors and hormones (insulin, glucagon, cortisol, adrenaline) are involved in regulation of glycolysis and gluconeogenesis.

FRUCTOSE 2,6-BISPHOSPHATE: A REGULATORY MOLECULE

- fructose 2,6-bisphosphate (F-2,6-BP) has an important role in signalling blood glucose concentration
- it is synthesized in a reaction catalyzed by **phosphofructokinase 2 (PFK-2)** which is a bifunctional enzyme
- bifunctional enzyme: kinase and phosphatase domain
 - phosphofructokinase-2 (PFK-2) catalyzes the phosphorylation of F-6-P to F-2,6-BP
 - fructose 2,6-bisphosphatase (FBPase-2) catalyzes the dephosphorylation of F-2,6-BP to F-6-P
- cellular concentration of fructose 2,6-bisphosphate (F-2,6-BP) depends on action of hormones insulin and glucagon

PHOSPHOFRUCTOKINASE 1 AND FRUCTOSE 1,6-BIPHOSPHATASE REGULATION

- these two enzymes are main regulatory points for glycolysis and gluconeogenesis

Glycolysis and gluconeogenesis regulation				
Enzyme	Activator	Inhibitor		
PFK-1	AMP, F-2,6-BP	ATP and citrate		
F-1,6-BISPHOSPHATASE	citrate	AMP, F-2,6-BP		

How does F-2,6-BP concentration change depending on glucose blood concentration?

In short

Enzyme	Allosteric activators	Allosteric inhibitors	Phosphorylation effect
PFK-1	AMP, F-2,6-BP	ATP, citrate	
F-1,6-BISPHOSPHATASE	Citrate	AMP, F-2,6-BP	
PYRUVATE KINASE	F-1,6-BP	ATP, alanine	Inhibiting
PYRUVATE CARBOXYLASE	Acetyl-CoA	ADP	
PEPCK		ADP	
PFK-2	AMP, F-6-P, P _i	Citrate	Inhibiting
F-2,6-BISPHOSPHATASE	Glycerol-3-P	F-6-P	Activating

<u>Literature used to prepare the presentation</u>

- 1. J.M. Berg, J.L. Tymoczko and L. Stryer: **Biochemistry**, 7 th edition, W.H. Freeman and Company, USA, 2010.
- 2. D.L. Nelson and M.M. Cox: **Lehninger Principles of Biochemistry**, 6 th edition, W.H. Freeman and Company, USA, 2013.
- 3. R.A. Harvey and D.R. Ferrier: **Lippincott's Illustrated Reviews: Biochemistry**, 5th edition, Wolters Kluwer Lippincott Williams & Wilkins, USA, 2011.
- 4. D. Voet i J.G. Voet: **Biochemistry**, 4th edition, John Wiley & Sons Inc., USA, 2010.

ANIMATION:

http://www.wiley.com/college/fob/anim/

Review questions/questions you should know the answers to:

- 1. What are regulatory reactions for glycolysis? Represent the substrates and products of those reactions by structural formulas and name the enzymes that catalyze them.
- 2. What reactions are different between glycolysis and gluconeogenesis?
- 3. What reaction is a key (major) regulatory reaction for glycolysis and gluconeogenesis?
- 4. What noncarbohydrate precursors can glucose be synthesized from via gluconeogenesis?
- 5. Write the net equations for glycolysis and gluconeogenesis.
- 6. Shortly describe the role of fructose 2,6-bisphosphate in glucose and gluconeogenesis.
- 7. What is the effect of glucagon on glycolysis and gluconeogenesis (what pathway does glucagon inhibit and what pathway does it stimulate)?
- 8. What is the effect of insulin on glycolysis and gluconeogenesis (what pathway does insulin inhibit and what pathway does it stimulate)?