CITRIC ACID CYCLE As Central Metabolic Pathway

- Aerobic metabolism
- Energy metabolism
 - → Energy conservation/ATP synthesis by complete oxidation of fuel (bio)molecules to CO₂, and reduction of O₂ to H₂O

THREE STAGES OF CELLULAR RESPIRATION

- 1. Acetyl-CoA production oxidation of fatty acids, glucose, and some amino acids.
- 2. Oxidation of acetyl-CoA in the citric acid cycle, CO₂ production, the energy released is conserved in the reduced electron carriers NADH and FADH₂.
- Re-oxidation of coenzymes in respiratory chain, electron transfer to O₂, production of ATP.

Oxidative decarboxylation of pyruvate and formation of acetyl-CoA and CO₂ catalyzed by the activity of pyruvate dehydrogenase (PDH) complex

The link between glycolysis and the citric acid cycle!

- irreversible reaction of <u>oxidative decarboxylation</u> → carboxyl group is removed as CO₂, acetyl group binds CoA
- NADH is reoxidized in respiratory chain

CITRIC ACID CYCLE

AMPHYBOLIC PATHWAY!

Citric acid cycle alone does not produce a lot of energy!

→ the energy of oxidation reactions is very efficiently conserved in the form of the reduced coenzymes NADH and FADH₂

1. Formation of Citrate (Condensation)

 $\Delta G^{\circ} = -32.2 \text{ kJ/mol}$

- Aldol condensation of acetyl-CoA and oxaloacetate
- Irreversible reaction catalyzed by citrate synthase
- Hydrolysis of a high-energy thioester intermediate citryl-CoA is very exergonic
 → it powers the synthesis of a new molecule from two precursors!
- Coenzyme A is recycled for needs of PDH activities

$$\begin{array}{c} COA \\ O=C \\ CH_2 \\ \hline \\ OOC \\ \end{array} + \begin{array}{c} COA \\ H_2C \\ \hline \\ H_3C \\ \end{array} + \begin{array}{c} COA \\ H_2C \\ \hline \\ COOC \\ \end{array} + \begin{array}{c} COA \\ H_2C \\ \hline \\ COOC \\ \end{array} + \begin{array}{c} COOC \\ HO \\ \hline \\ COOC \\ \end{array} + \begin{array}{c} COOC \\ COOC \\ \hline \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array} + \begin{array}{c} COOC \\ COOC \\ \hline \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array} + \begin{array}{c} COOC \\ COOC \\ \hline \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ COOC \\ \hline \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ \hline \\ OOC \\ \end{array}$$

$$\begin{array}{c} COOC \\ CH_2 \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\$$

Citrate synthase exhibits sequential, ordered kinetics: oxaloacetate induces a major structural rearrangement leading to the creation of a binding site for acetyl CoA

2. Formation of Isocitrate (Dehydration and Hydration)

- The tertiary hydroxyl group is not properly located in the citrate molecule for the oxidative decarboxylations that follow:
- → isomerisation reaction catalyzed by <u>aconitase</u>
- Intermediate is cis-aconitate
- Aconitase is a non-heme iron protein, contains an iron-sulfur center, which acts both in the <u>binding of the substrate</u> at the active site and in the catalytic addition or removal of H₂O

3. Oxidative Decarboxylation of Isocitrate

- Enzyme <u>isocitrate dehydrogenase</u> catalyzes **oxidative decarboxylation** of isocitrate and formation of α -ketoglutarate.
- The rate of formation of α-ketoglutarate defines the overall rate of the cycle! (Pace-maker reaction)
- There are **two isoforms** using either NAD⁺ or NADP ⁺ as electron acceptors.
- The intermediate in this reaction is oxalosuccinate $\rightarrow \rightarrow \rightarrow$

3. Oxidative Decarboxylation of Isocitrate

→ the intermediate **oxalosuccinate**, an unstable ketoacid

$$\begin{array}{c} \text{COO}^- \\ \text{CH}_2 \\ \text{H}-\text{C}-\text{C} \\ \text{O}^- \\ \text{HO}-\text{C}-\text{H} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{O}^- \\ \text{C} \\ \text{C}$$

4. Oxidative Decarboxylation of α -Ketoglutarate

- The energy of α -ketoglutarate oxidation is conserved in succinyl-CoA tioesther bond!
- The oxidative decarboxylation of α -ketoglutarate closely resembles that of pyruvate, also an α -ketoacid (identical type of the reaction)
- The complex that catalyzes the <u>oxidative decarboxylation</u> of α -ketoglutarate \rightarrow α -ketoglutarate dehydrogenase is homologous to the PDH complex:
 - it includes three enzymes, homologous to E1, E2, and E3 of the PDH complex, as well as enzyme-bound TPP, bound lipoate, FAD, NAD +, and coenzyme A
- Reaction is **exergonic**, irreversible in physiol. conditions.

5. Substrate-Level Phosphorylation reaction (SuccinateFormation)

- Free energy of the **hydrolysis of thioester** succinyl-CoA is conserved in either GTP or ATP (used to drive the synthesis of a phosphoanhydride bond).
- Reaction is catalyzed by <u>succinyl-CoA synthetase</u> (<u>succinic thiokinase</u>):
 → 2 isoenzymes with different specificity for either ADP or GDP
- Reversible exchange GTP/ATP is catalyzed by <u>nucleoside diphosphate kinase</u>.

$$GTP + ADP \Longrightarrow GDP + ATP$$
 $\Delta G^{\circ} = 0 \text{ kJ/mol}$

6. Succinate Dehydrogenation (oxidation)

- Succinate is oxidized to fumarate by the flavoprotein succinate dehydrogenase
- <u>FAD</u> is the <u>e⁻ acceptor</u> (hydrogen acceptor) in this reaction, as the cofactor covalently bound to the enzyme
- The only enzyme of the citric acid cycle that is tightly bound to the inner mitochondrial membrane (IMM)!
 - FADH₂ does not dissociate from the enzyme (in contrast to NADH produced in other oxidation-reduction reactions);
 - rather, two electrons are transferred from FADH₂ directly to iron-sulfur clusters of the enzyme

<u>Succinate dehydrogenase or Complex II (succinate-ubiquinone oxidoreductase) of the electron-transport chain</u>

bound to the inner mitochondrial membrane contains 3 different ironsulfur clusters and covalently bound FAD

- electrons are directly transported from FADH₂ to coenzyme Q of the respiratory chain
 - succinate dehydrogenase (Complex II) is directly associated with the electron-transport chain, the link between the citric acid cycle and ATP formation

Malonate, an analog of succinate not normally present in cells, is a strong competitive inhibitor of succinate dehydrogenase.

Its addition to mitochondria blocks the activity of the citric acid cycle.

7. <u>Hydration of Fumarate to Malate</u>

$$\Delta G^{\prime \circ} = -3.8 \text{ kJ/mol}$$

- The reversible hydration of fumarate to L-malate is catalyzed by fumarase (formally fumarate hydratase).
- This enzyme is <u>highly stereospecific</u>; <u>it catalyzes hydration of</u> the trans double bond of fumarate (exclusively).

Fumarase is highly stereospecific for substrates fumarate and L-malate.

It catalyzes hydration of the <u>trans</u> double bond of fumarate, and **not** the <u>cis</u> double bond of maleate, the <u>cis</u> isomer of fumarate.

8. Oxidation of Malate to Oxaloacetate

$$\Delta G^{\prime \circ} = 29.7 \text{ kJ/mol}$$

- NAD-linked <u>L-malate dehydrogenase</u> catalyzes <u>the oxidation</u> of L-malate to oxaloacetate
- under standard thermodinamic contitions, the equilibrium of this reaction lies far to the left, but:
 - oxaloacetate is <u>continually removed</u> by the **highly exergonic citrate**synthase reaction → this keeps the <u>concentration of oxaloacetate in the</u>
 <u>cell extremely low (<10⁻⁶ M)</u>, pulling the malate dehydrogenase reaction
 toward the formation of oxaloacetate

The Net reaction of Citric Acid Cycle:

Acetyl-CoA + 3 NAD⁺ + FAD + GDP + P_i + 2 $H_2O \rightarrow$ CoA-SH + 3 NADH + FADH₂ + GTP + 2 CO_2 + 3H⁺

TABLE 17.2 Citric acid cycle

Step	Reaction	Enzyme	Prosthetic group	Type*	ΔG°	
					kcal mol ⁻¹	kJ mol-
1	Acetyl CoA + oxaloacetate + $H_2O \longrightarrow$ citrate + CoA + H^+	Citrate synthase		a	-7.5	-31.4
2a	Citrate ← cis-aconitate + H2O	Aconitase	Fe-S	ь	+2.0	+8.4
2b	cis-Aconitate + H ₂ O ⇒ isocitrate	Aconitase	Fe-S	C	-0.5	-2.1
3	Isocitrate + NAD ⁺ \Longrightarrow α -ketoglutarate + CO ₂ + NADH	Isocitrate dehydrogenase		d+e	-2.0	-8.4
4	α-Ketoglutarate + NAD ⁺ + CoA ⇒⇒ succinyl CoA + CO ₂ + NADH	α-Ketoglutarate dehydrogenase complex	Lipoic acid, FAD, TPP	d+e	-7.2	-30.1
5	Succinyl CoA + P_i + GDP \Longrightarrow succinate + GTP + CoA	Succinyl CoA synthetase		f	-0.8	-3.3
6	Succinate + FAD (enzyme-bound) fumarate + FADH ₂ (enzyme-bound)	Succinate dehydrogenase	FAD, Fe-S	e	-0	0
7	Fumarate $+ H_2O \rightleftharpoons L$ -malate	Fumarase		c	-0.9	-3.8
8	L-Malate + NAD+ ⇒ oxaloacetate + NADH + H+	Malate dehydrogenase		е	+7.1	+29.7

^{*}Reaction type: (a) condensation; (b) dehydration; (c) hydration; (d) decarboxylation; (e) oxidation; (f) substrate-level phosphorylation.

Oxidation energy is very efficiently conserved in citric acid cycle!

TABLE 19–5 ATP Yield from Complete Oxidation of Glucose						
Process	Direct product	Final ATP				
Glycolysis	2 NADH (cytosolic)	3 or 5				
	2 ATP	2				
Pyruvate oxidation (two per glucose)	2 NADH (mitochondrial matrix)	5				
Acetyl-CoA oxidation in citric acid cycle	6 NADH (mitochondrial matrix)	15				
(two per glucose)	2 FADH ₂	3				
	2 ATP or 2 GTP	2				
Total yield per glucose		30 or 32				

^{*} The number depends on which shuttle system transfers reducing equivalents into the mitochondrion.

Reactions order (6,7,8) - oxidation, hydration, oxidation – analogous to fatty acid oxidation reactions!

Metabolon: Enzymes are probably interconnected - higher efficiency of catalytic activity (substrate channeling)

<u>CITRIC ACID CYCLE IS AMPHYBOLIC -</u> roles in catabolism and anabolism of biomolecules

Citric acid cycle <u>intermediates</u> are <u>precursors (intermediates) for biosynthesis of important biomolecules!</u>

Figure 16–4. Involvement of the citric acid cycle in transamination and gluconeogenesis. The bold arrows indicate the main pathway of gluconeogenesis.

Figure 16–5. Participation of the citric acid cycle in fatty acid synthesis from glucose. See also Figure 21–5.

Concentrations of the citric acid cycle intermediates remain constant!

Anaplerotic* reactions replenish citric acid cycle intermediates!

- intermediates must be replenished if any are drawn off for biosyntheses

<u>table 16-2</u>

Anaplerotic Reactions							
Reaction	Tissue(s)/organism(s)						
Pyruvate + $HCO_3^- + ATP \xrightarrow{pyruvate carboxylase}$ oxaloacetate + $ADP + P_i$	Liver, kidney						
Phosphoenolpyruvate + CO ₂ + GDP PEP carboxykinase oxaloacetate + GTP	Heart, skeletal muscle						
Phosphoenolpyruvate + HCO ₃ PEP carboxylase oxaloacetate + P _i	Higher plants, yeast, bacteria						
Pyruvate + HCO_3^- + $NAD(P)H \xrightarrow{\text{malic enzyme}} malate + NAD(P)^+$	Widely distributed in eukaryotes and prokaryotes						

^{*}anaplerotic - to "fill up" (Greek $\dot{\alpha}$ v $\dot{\alpha}$ = 'up' and $\pi\lambda\eta\rho\dot{\omega}$ = 'to make full, to complete')

Anaplerotic reactions

<u>The most important anaplerotic reaction</u> in mammalian liver and kidneys is reversible <u>pyruvate carboxylation</u> catalyzed by <u>pyruvate carboxylase</u>.

- <u>pyruvate carboxylase</u> is a regulatory enzyme <u>acetyl-CoA</u> is its alosteric <u>activator</u>!
- the enzyme is virtually inactive in the absence of acetyl-CoA
- <u>acetyl-CoA</u> signifies the need for more oxaloacetate:

Why patients with rare pyruvate carboxylase defficiency have high concentration of lactate in urine (lactic aciduria)?

Pyruvate carboxylase cofactors

lipoate, **biotin** and **mercaptoethylamin- pantothenate** act as intermediate carriers from one active site to another in the enzyme complex.

<u>Biotin</u> plays a key role in many <u>carboxylation reactions</u> - it is a specialized <u>carrier of one-carbon groups</u> in their <u>most oxidized form</u>: <u>CO</u>₂

Malic enzyme - bound to NADP+

- catalyzes anaplerotic reactions!
- second important role - cell supply with NADPH for fatty acid biosynthesis

Pyruvate ATP, acetyl-CoA, pyruvate NADH, fatty acids dehydrogenase complex AMP, CoA, NAD+, Ca2+ Acetyl-CoA NADH, succinyl-CoA, citrate, ATP citrate Citrate synthase Oxaloacetate Isocitrate ∧TP isocitrate dehydrogenase Ca²⁺, ADP malate dehydrogenase NADH Malate α-Ketoglutarate FADH₂ succinyl-CoA, NADH α-ketoglutarate dehydrogenase Ca²⁺ succinate Succinvl-CoA dehydrogenase

Regulation of the Citric Acid Cycle

- 1) Substrate availability
- 2) Inhibition by accumulating products
- 3) Allosteric feedback inhibition of the enzymes that catalyze early steps in the cycle

- I. <u>Acetyl-CoA formation</u>: Regulation of PDH complex by allosteric and covalent mechanisms
- II. <u>Citric acid cycle</u>: Regulation of <u>exergonic</u> reactions

Pyruvate ATP, acetyl-CoA, pyruvate NADH, fatty acids dehydrogenase complex AMP, CoA, NAD+, Ca2 Acetyl-CoA NADH, succinyl-CoA, citrate, ATP ADP citrate Citrate synthase Oxaloacetate Isocitrate ∧TP isocitrate dehydrogenase Ca²⁺, ADP malate dehydrogenase NADH Malate α-Ketoglutarate FADH₉ xuccinyl-CoA, NADH α-ketoglutarate dehydrogenase Ca²⁺ succinate Succinvl-CoA dehydrogenase

Regulation of the Citric Acid Cycle

The flow of carbon atoms from pyruvate (into and through the citric acid cycle) is under tight regulation at two levels:

- 1) the conversion of pyruvate to acetyl-CoA, the starting material for the cycle
- 2) the **entry of acetyl-CoA** into the cycle the <u>citrate synthase reaction</u>

other important regulation points:

- availability of intermediates from other pathways (fatty acids, amino acids)
- the <u>isocitrate dehydrogenase</u> and α ketoglutarate dehydrogenase reactions

Inhibition

Activation ACTIVATION OF STEP 1: citrate synthase Activator: ADP ACTIVATION OF STEP 3: isocitrate dehydrogenase Activators (Ca²⁺, ADP) **ACTIVATION OF STEP 4**: α-ketoglutarate dehydrogenase Activators (Ca2+) Acetyl-CoA 7 Oxalo-Citrate acetate ATP Isocitrate ADP Malate Inhibition of steps 3 Cell needs energy. and 4 is reduced. NADH NAD+ ADP α -keto-Fumarate gutarate 5 NADH Succinyl-CoA Succinate

In muscle tissue, Ca²⁺ signals contraction and stimulates energy-yielding metabolism to replace the ATP consumed by contraction!

Citric acid cycle inhibitors:

- √ fluoroacetate
 - ✓ arsenite
 - √ malonate

Citric Acid Cycle Animation

http://www.wiley.com/legacy/college/boyer/0470003790/animations/tca/tca.htm

Literature:

- 1. Nelson D.L. and Cox M.M.: Lehninger Principles of Biochemistry. 6th Edition, 2013, W.H. Freeman and Company, New York. (Chapter 16)
- 2. J. Koolman i K.H. Roehm: Color Atlas of Biochemistry, 2nd edition, Flexibook, Stuttgart-New York, 2005.
- 3. Stryer, Biochemistry, W. H. Freeman, New York, 2006
- 4. McKee-McKee, Biochemistry: The Molecular Basis of Life, 3rd edition, The McGraw Hill Companies, 2004.
- 5. R. K. Murray i sur.: Harperova ilustrirana biokemija, prijevod 28. izdanja; Medicinska naklada, Zagreb, 2011.
- 6. http://www.wiley.com/college/pratt/0471393878/instructor/animations/citric_acid_cycle/index.html
- 7. https://www.studyblue.com/notes/note/n/unit-1-chapter-1/deck/5599545

HOMEWORK: Questions to be answered

- 1. Briefly explain the metabolic role of citric acid cycle in:
- (a) catabolism, particularly "energy metabolism";
- (b) anabolism!
- 2. Write the net (sum) chemical equation of the citric acid cycle!
- 3. Define the term <u>anaplerotic reaction</u>. Represent by structural formulas the most common anaplerotic reaction related to the citric acid cycle.
- 4. Briefly explain the regulation of citric acid cycle!