CITRIC ACID CYCLE
As Central Metabolic Pathway
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THREE STAGES OF CELLULAR RESPIRATION

1. Acetyl-CoA production - oxidation of
fatty acids, glucose, and some amino
acids.

2. Oxidation of acetyl-CoA in the citric acid
cycle, CO, production, the energy
released is conserved in the reduced
electron carriers NADH and FADH,.

3. Re-oxidation of coenzymes in respiratory
chain, electron transfer to O,, production
of ATP.
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The link between glycolysis and
the citric acid cycle!




Special protein carrier transports
pyruvate from cytosol to mitochondrial
matrix in symport with H*.
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AG'™ = —33.4 kJ/mol

* irreversible reaction of oxidative decarboxylation - carboxyl group is
removed as CO,, acetyl group binds CoA

* NADH is reoxidized in respiratory chain



CITRIC ACID CYCLE

AMPHYBOLIC
PATHWAY!

® .

H iy .
Fumarate 120 Citric acid cycle alone

does not produce
a lot of energy!

— the energy of oxidation
reactions is very efficiently
conserved in the form of the
reduced coenzymes NADH
and FADH,
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1. Formation of Citrate (Condensation)
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Aldol condensation of acetyl-CoA and oxaloacetate
Irreversible reaction catalyzed by citrate synthase
Hydrolysis of a high-energy thioester intermediate citryl-CoA is very exergonic

— it powers the synthesis of a new molecule from two precursors!
Coenzyme A is recycled for needs of PDH activities
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Citrate synthase exhibits
sequential, ordered kinetics:
oxaloacetate induces a major

structural rearrangement

leading to the creation of a
binding site for acetyl CoA




2. Formation of Isocitrate (Dehydration and Hydration)
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- The tertiary hydroxyl group is not properly

located in the citrate molecule for the oxidative

decarboxylations that follow:

-» isomerisation reaction catalyzed by aconitase

Intermediate is cis-aconitate

Aconitase is a non-heme iron protein, contains an iron-sulfur
center, which acts both in the binding of the substrate at the

active site and in the catalytic addition or removal of H,0
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3. Oxidative Decarboxylation of Isocitrate
1
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- Enzyme isocitrate dehydrogenase catalyzes oxidative decarboxylation of
isocitrate and formation of a-ketoglutarate.

-  The rate of formation of a-ketoglutarate defines the overall rate of the cycle!
(Pace-maker reaction)

- There are two isoforms using either NAD* or NADP * as electron acceptors.

- The intermediate in this reaction is oxalosuccinate >—>-



3. Oxidative Decarboxylation of Isocitrate
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4. Oxidative Decarboxylation of «-Ketoglutarate
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AG'™ = —33.5 kd/mol

The energy of a-ketoglutarate oxidation is conserved in succinyl-CoA tioesther
bond!

The oxidative decarboxylation of a-ketoglutarate closely resembles that of
pyruvate, also an a-ketoacid (identical type of the reaction)

The complex that catalyzes the oxidative decarboxylation of o-ketoglutarate -
a-ketoglutarate dehydrogenase is homologous to the PDH complex:

- itincludes three enzymes, homologous to E1, E2, and E3 of the PDH complex, as
well as enzyme-bound TPP, bound lipoate, FAD, NAD *, and coenzyme A

Reaction is exergonic, irreversible in physiol. conditions.




5. Substrate-Level Phosphorylation reaction (succinateFormation )
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- Free energy of the hydrolysis of thioester succinyl-CoA is conserved in either GTP or
ATP (used to drive the synthesis of a phosphoanhydride bond).

- Reaction is catalyzed by succinyl-CoA synthetase (succinic thiokinase):
— 2 isoenzymes with different specificity for either ADP or GDP

- Reversible exchange GTP/ATP is catalyzed by nucleoside diphosphate kinase.

GTP + ADP<—= GDP + ATP AG'® = 0 kJ/mol




6. Succinate Dehydrogenation (oxidation)
1
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Succinate is oxidized to fumarate by the flavoprotein succinate dehydrogenase

FAD is the e acceptor (hydrogen acceptor) in this reaction, as the cofactor
covalently bound to the enzyme

The only enzyme of the citric acid cycle that is tightly bound to the inner
mitochondrial membrane (IMM)!

» FADH, does not dissociate from the enzyme (in contrast to NADH produced in other
oxidation-reduction reactions);

» rather, two electrons are transferred from FADH, directly to iron-sulfur clusters of the enzyme



Succinate dehydrogenase or Complex Il (succinate-ubiquinone
oxidoreductase) of the electron-transport chain

ETC

Complex Il 'i

- bound to the inner

mitochondrial membrane
- contains 3 different iron-

sulfur clusters and
covalently bound FAD

H,0
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) =
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TCA cycle

- electrons are directly transported from FADH, to coenzyme Q of the respiratory chain

— succinate dehydrogenase (Complex Il) is directly associated with the electron-transport
chain, the link between the citric acid cycle and ATP formation

Illustration source: Nature Rev Cancer, 2005, Nature Publishing Group, www.medscape.com
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Malonate, an analog of succinate

not normally present in cells, is a
strong competitive inhibitor of
succinate dehydrogenase.

Its addition to mitochondria
blocks the activity of the citric
acid cycle.



7. Hydration of Fumarate to Malate
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- The reversible hydration of fumarate to L-malate is catalyzed by
fumarase (formally fumarate hydratase).

- This enzyme is highly stereospecific; it catalyzes hydration of
the trans double bond of fumarate (exclusively).
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Fumarase is highly
stereospecific for substrates
fumarate and L-malate.

It catalyzes hydration of the
trans double bond of
fumarate, and not the cis
double bond of maleate, the
cis isomer of fumarate.



8. Oxidation of Malate to Oxaloacetate
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NAD-linked L-malate dehydrogenase catalyzes the oxidation of L-malate to
oxaloacetate

under standard thermodinamic contitions, the equilibrium of this reaction
lies far to the left, but:

- oxaloacetate is continually removed by the highly exergonic citrate
synthase reaction - this keeps the concentration of oxaloacetate in the
cell extremely low (<10 M), pulling the malate dehydrogenase reaction
toward the formation of oxaloacetate
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The Net reaction of Citric Acid Cycle:

Acetyl-CoA + 3 NAD* + FAD + GDP + P, + 2 H,0 =

CoA-SH + 3 NADH + FADH, + GTP + 2 CO, + 3H*

I
TABLE 17.2  Citric acid cycle

AGE
Prosthetic
Step Reaction Enzyme group Type® keal mol=t  kJ mol=!
1 Acetyl CoA + oxaloacetate + H,O ——  Citrate synthase a - g-g 314
citrate + CoA + HT
2a  Citrate == cis-acomtate + H,0O Aconitase Fe-5 b £20 L84
b ers-Acomtate + H7(0 == wocitrate Aconitase BB C 0.5 a1
3 Tsocitrate + NAD T == Isocatrate d+ e —70 —84
i -ketoglutarate + CO. + NADH  dehydrogenase
4  w-Ketoglutarate + NADT + CoA — o-Ketoglutarate  Lipoicacd, d+e 79 ~30.1
succinyl CoA + COy + NADH dehydrogenase  FAD, TPP
complex
5 Succinyl CoA + P+ GDP — Buccinyl CoA I 0.4 _a
succinate + GTF + CoA synthetase
fi Succinate + FAD {enzyme-bound) ——= muccinate FAD, Fe-5 & Y 0
fumarate + FADH. (enzyme-bound)  dehydrogenase
7 Fumarate + H,0 — L-malate Fumarase C —1.9 _138
8  L-Malate + NADT — Malate e L7 397
oxaloacetate + NADH + HY  dehydrogenase

*Reaction type: (a) condensation; (b} dehydration; {c] hydration; {d) decarboxylation;
(e} oxidation; (£ substrate-level phosphoryiation.




Oxidation energy is very efficiently conserved in citric acid cycle!

- Transfer of two electrons from NADH to O, in ETC
drives the formation of 2.5 ATP in oxidative
phosphorylation, and transfer of two electrons
from FADH, to O, (in ETC) yields 1.5 ATP in

Acetyl-CoA oxidative phosphorylation
Citra
* \ 1 NADH (2e’) > 2.5 ATP
Oxaloacetate Isoeibrate 1 FADHZ (ZE') 9 1.5 ATP
NADH <

) How many ATP molecules
are produced by complete

Malate

‘ a-Ketoglutarate oxidation of 1 molecule of
Fumarate

Ely;-" - acetyl-CoA?

t ., NADH

FADHy < ¢ Sucggyl-CoA 10 ATP
E\mﬁnm& /

M GTP

»

(ATP)



TABLE 19-5 ATP Yield from Complete Oxidation of Glucose

Process Direct product Final ATP
Glycolysis 2 NADH (cytosolic) 3or5
2 ATP 2
Pyruvate oxidation (two per glucose) 2 NADH (mitochondrial matrix) 4]
Acetyl-CoA oxidation in citric acid cycle 6 NADH (mitochondrial matrix) 15
(two per glucose) 2 FADH, 3
2 ATP or 2 GTP 2
Total yield per glucose 30 or 32

* The number depends on which shuttle system transfers reducing equivalents into the mitochondrion.
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CITRIC ACID CYCLE IS AMPHYBOLIC -
roles in catabolism and anabolism of biomolecules

Citric acid cycle intermediates are precursors (intermediates) for biosynthesis of
important biomolecules!
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‘ Oxa[uacetate
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sterols
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1 :
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e — \ Other
Pﬂrph‘}’rin5r Glutamate dmino afldﬁ

heme, chlorphyll
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Figure 16-4. Involvement of the citric acid cycle in transamination and gluconeo-
genesis. The bold arrows indicate the main pathway of gluconeogenesis.
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Figure 16-5. Participation of the citric acid cycle in
fatty acid synthesis from glucose. See also Figure 21-5.



Concentrations of the citric acid cycle intermediates
remain constant!

Anaplerotic* reactions replenish citric acid cycle intermediates!

- intermediates must be replenished if any are drawn off for biosyntheses

Anaplerotic Reactions

Reaction Tissue(sNorganism(s)
Pyruvate + HCO; + ATP ikl e oxaloacetate + ADP + P, Liver, Kidney
Phosphoenolpyruvate + CO,; + GOP S oxaloacetate + GTP Heart, skeletal muscle
Phosphoenolpyruvate + HCO; e oxaloacetate + P, Higher plants, yeast, bacteria
Pyruvate + HCO3 + NAD(PJH =————= malate + NAD(P}’ Widely distributed

in eukaryotes
and prokaryotes

*anaplerotic - to "fill up” (Greek Avd = 'up' and MAnpow = 'to make full, to complete')



Anaplerotic reactions

pyruvate

carboxylaze Aeotvl-CaA

PEP carboxykinase

N

) v
Phosphoenolpyruvate Oxaloacetate Citrate
(PEP)

FIGURE 16-15 Role of the citric acid cycle in anabolism.
Intermediates of the citric acid cycle are drawn off as
precursors in many biosynthetic pathways. Shown in red
are four anaplerotic reactions that replenish depleted cycle
intermediates (see Table 16-2).



The most important anaplerotic reaction in mammalian liver and kidneys
is reversible pyruvate carboxylation catalyzed by pyruvate carboxylase.

ATP — — oxaloacetate + ADP + P,

Fyruvate + HCO;

- pyruvate carboxylase is a regulatory enzyme — acetyl-CoA is its alosteric activator!

- the enzyme is virtually inactive in the absence of acetyl-CoA

acetyl-CoA signifies the need for more oxaloacetate:

O Vitamin biotin is prosthetic
-~y 8roup of the pyruvate
| | carboxylase.
HC——CH
Why patients with rare pyruvate | | e
carboxylase defficiency have high gl S/CH_{CH2)4_C_ On

concentration of lactate in urine
(lactic aciduria)?
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Biotin plays a key role in many carboxylation reactions - it is a specialized
carrier of one-carbon groups in their most oxidized form: CO,
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Pyruvate
ATP, acetyl-CoA,

pyruvate ® 1 ‘atty acids ° ° ° °
P 1 bt ieat - Regulation of the Citric Acid Cycle

complex @ AMP, CoA, NAD", Ca
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& @ e 2) Inhibition by
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Oxsloditate ’ 3) Allosteric feedback
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dehydrogenase g @) ca2+, ADP enzymes that catalyze

early steps in the cycle
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dehydrogenase

a-Ketoglutarate

@ succinyl-CoA, NADH

@ CaZt

a-ketoglutarate S
dehydrogenase

succinate

dehydrogenase Suceinyl-CoA I

Acetyl-CoA formation: Regulation
of PDH complex by allosteric and
covalent mechanisms

Il. Citric acid cycle: Regulation of
exergonic reactions




Pvruvate
ATP, acetyl-Cod, o ° ° °
R .t NADH, fatty acids Regulation of the Citric Acid Cycle

complex W @) AMP, CoA, NAD", Ca?

The flow of carbon atoms from
pyruvate (into and through the
”@’;;;““"i“"’"““"' St ATE citric acid cycle) is under tight
regulation at two levels:
1) the conversion of pyruvate to
acetyl-CoA, the starting material for

Acetyl-CoA

X

citrate

gynthase Citrate

Oxaloacetate B
e noogate. the cycle
/ \\ 1socitrate § @ ATP
dehydrogenase T .
v e | @ a07 | 9) the entry of acetyl-CoA into the
dehyvdrogenase MH. . .
e, cycle - the citrate synthase reaction
Malate 1 r\\_ﬁ______f,/ y y
— \ r.c-KEl.uElutarule
m \ a-ketoglutarate 8 ® succinyl-CoA, NADH
I,-'f b IJI.'|1_'-.cl:'l'lgr:_tir.-'v @ CaZ+
i —
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H > other important regulation points:
l - availability of intermediates from other
GTP pathways (fatty acids, amino acids)
M - the isocitrate dehydrogenase and

a- ketoglutarate dehydrogenase reactions
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INHIBITION OF STEP 1: citrate synthase
Substrate Availability (acetyl-CoA,
oxaloacetate)

Product Inhibition (citrate)
Feedback Inhibition (NADH from
pool generated by entire cycle,
succinyl-CoA)

INHIBITION OF STEP 3: isocitrate
dehydrogenase
Product Inhibition (NADH)
Feedback Inhibition (NADH from
pool generated by entire cycle)

INHIBITION OF STEP 4: o-ketoglutarate
dehydrogenase
Product Inhibition (succinyl-CoA,
NADH)
Feedback Inhibition (NADH from
pool generated by entire cycle)




Activation

ACTIVATION OF STEP 1: citrate synthase
Activator: ADP

ACTIVATION OF STEP 3: isocitrate dehydrogenase
Activators (Ca?*, ADP)

ACTIVATION OF STEP 4 : u-ketoglutarate dehydrogenase
Activators (Ca?*)

Oxalo-
acetate

Citrate

FL Inhibition of steps 3
and 4 is reduced.

Succinate  Succinyl-CoA NADH

In muscle tissue, Ca?* signals contraction and stimulates energy-yielding
metabolism to replace the ATP consumed by contraction!
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Citric acid cycle

inhibitors:

v fluoroacetate

v arsenite
v malonate



Citric Acid Cycle Animation
http://www.wiley.com/legacy/college/boyer/0470003790/animations/tca/tca.htm
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cycle/index.html

7. https://www.studyblue.com/notes/note/n/unit-1-chapter-1/deck/5599545
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HOMEWORK: Questions to be answered

1. Briefly explain the metabolic role of citric acid cycle in:
(a) catabolism, particularly “energy metabolism?;
(b) anabolism!

2. Write the net (sum) chemical equation of the citric acid cycle!

3. Define the term anaplerotic reaction. Represent by structural
formulas the most common anaplerotic reaction related to the
citric acid cycle.

4. Briefly explain the regulation of citric acid cycle !




