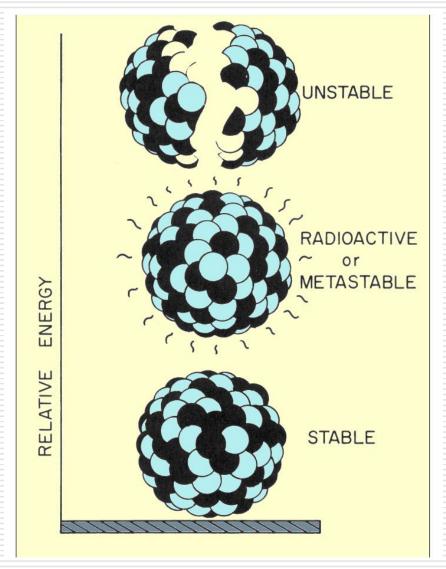

Dosimetry

Sanja Dolanski Babić May, 2018.

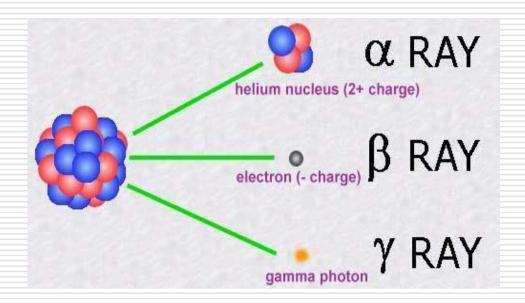

What's the difference between radiation and radioactivity?

Radiation - the process of emitting energy as waves or particles, and the radiated energy

Radioactivity - the property of radionuclides of spontaneously emitting ionizing radiation

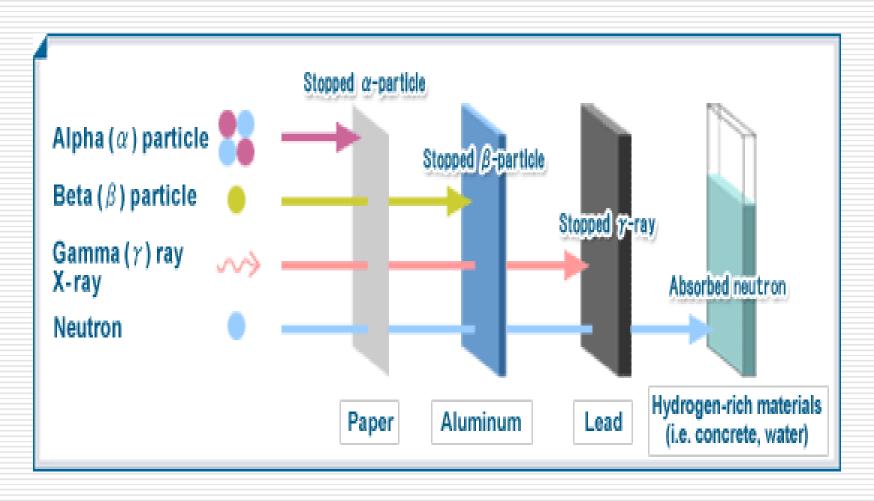
Sources of radiation – natural and artificial

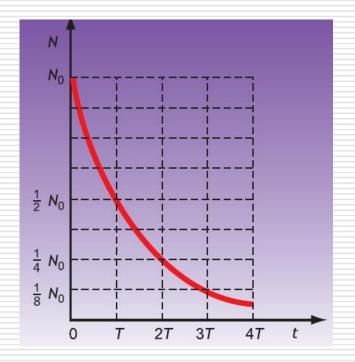
Radionuclide – radioactive nucleus

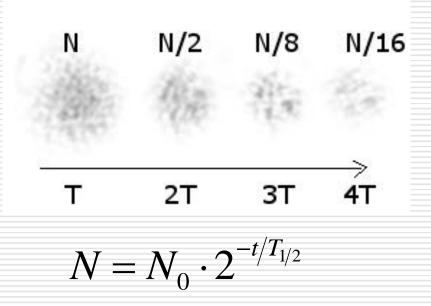

The three levels of nuclear stability

Radioactive isotopes

- □ Radioactive isotopes (radionuclides) of some elements (¹⁴C, ¹⁵N, ¹³³I,...) have unstable nuclei which decay in the process of transmutation to more stable nuclei.
- These new formed nuclei are usually in the excited state and relax to the ground state by the emission of radiation: in the form of particles (α, β) or photons (γ) .

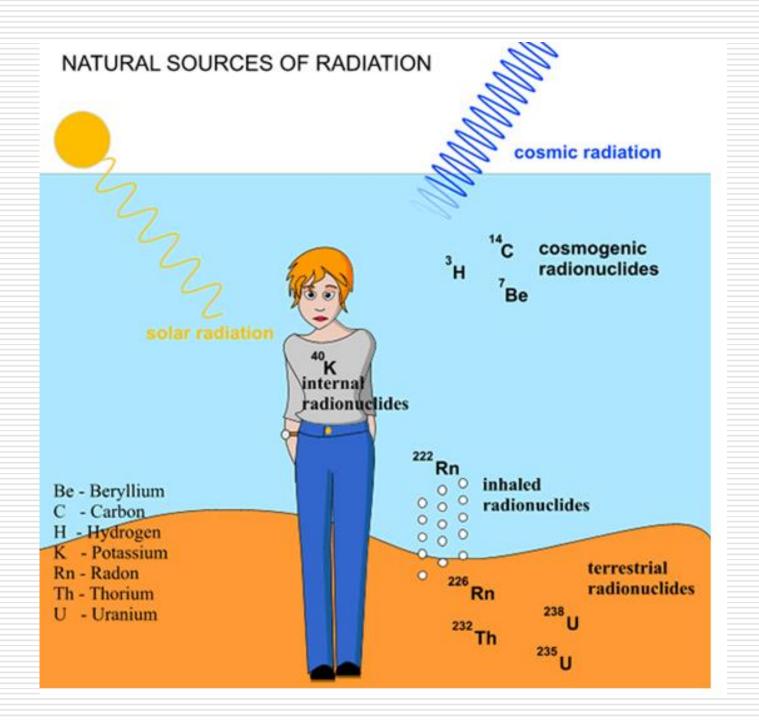

Types of ionizing radiation


Radioactivity is a spontaneous transmutation of an atom into another atom with the emission of radiation.



http://www.youtube.com/watch?v=o-9yt7OAYmE&feature=related

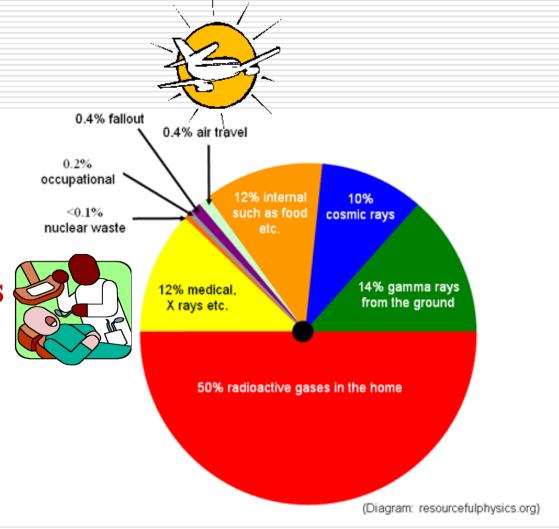
Types of ionizing radiation


The half-life is the time taken for half of the atoms of a radioactive substance to decay.

$$A = A_0 e^{-T_{1/2}/t}$$

activity – the number of decays in 1 s

the half-life time $\lambda = \frac{\ln \lambda}{T}$


radioactive decay constant

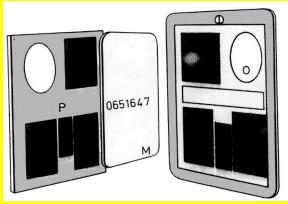
Radionuclides used in medicine

radionuclides	half time
cesium - 137	30.1 years
cobalt - 58	71.3 days
iodine - 124	4.17 days
iodine - 130	12.4 hours
iodine - 131	8.041 days
iron - 52	8.3 hours
molybdenum - 99	66.02 hours
technetium – 99m	6.02 hours

Pie chart for background radiations

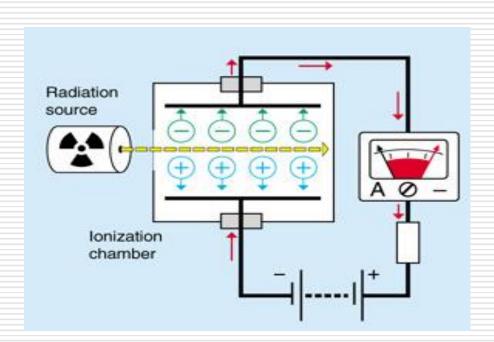
Devices for detecting and measuring of radiation:

- 1. Devices for track visualisation of radioactive particles radiographic track and Wilson cloud chamber
- 2. Counters (detectors) Geiger counter, scintillation detector, semiconductor detector, gamma-camera etc.
- 3. Dosimeter is a small portable instrument for measuring and recording the total accumulated dose of ionizing radiation a person receives such as a film badge, thermoluminescent or pocket dosimeter


Radiation detectors are used in: nuclear physics, medicine, particle physics, astronomy and industry

Radiographic track

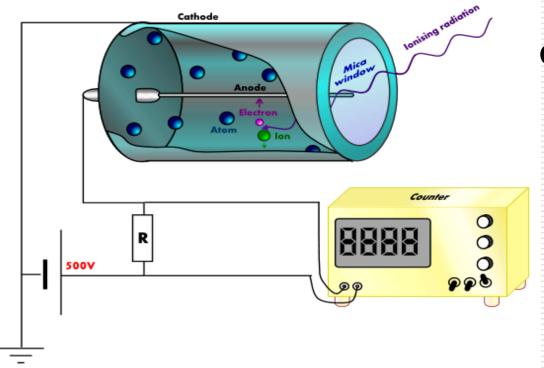
Diagnostics


Radiotherapy

Protection from radiation

Ionization Chamber

- device used for two major purposes: detecting charged particles in the air and for detecting or measuring of ionizing radiation
- device measures the electric current generated when radiation ionizes the gas in the chamber and therefore makes it electrically conductive



Principle of an ionization chamber

- electric currents are very low: around 10⁻¹⁵ A
- dosimetry in medicine measures very low doses X and γ radiation

Geiger-Müller Counter

- detects a single particle of ionizing radiation and produce an audible click for each

GM tube – simply gas detector

- higher voltage at the source of current
- imediate "chain" ionizationof the gas

- electric current is 10^{10} times higher than primary electric current
- GM counter is used to detect usually alpha and beta radiation

That's how it used to be...

Chest X ray examination

Deep therapy was the first use of X-ray to treat cancer, and the Hospital was among the first to secure the equipment, here in use in 1947.

https://www.youtube.com/watch?v=j N7oqMw6ipo

Radiotherapy: http://www.cchosp.com/cchhist.asp?p=510

EXPOSURE (X)— measure for ionization of the air mass of 1kg

$$X = \Delta Q/\Delta m$$
 [X]=C/kg 1 R = 2.58 x 10⁻⁴ C/kg

- defined only for electromagnetic radiations which energies are smaller than 3 MeV

RADIATION ABSORBED DOSE (D)-

measure of increasing internal energy (ΔU) in a mass of 1 kg tissue (ΔU) caused by absorption of ionizing radiations

$$D = \Delta U/\Delta m$$
 [D]=Gy=J/kg 1Gy = 100 rad

- defined for all ionizing radiations
- measuring of absorbed doses are not possible in living tissues

dose in gray = energy deposited per kg

dose equivalent in sievert = dose in gray \times quality factor

- EQUIVALENT DOSE is calculated: $D_{eq} = D \times H$;

H is radiation quality factor $[D_{eq}] = Sv$; 1 Sv = 100 rem

Radiation quality factors		
radiation	factor	dose equivalent of 1 gray
alpha	20	20 Sv
beta	1	1 Sv
gamma	1	1 Sv
x-rays	1	1 Sv
neutrons	10	10 Sv

EFFECTIVE EQUIVALENT DOSE: Deq x f

- each body part has its own weight factor, f

Whole body	1 (100%)
Ovaries, testes	0.25 (25%)
Bone marrow	0.12 (12%)
Bone surface	0.03 (3%)
Thyroid	0.03 (3%)
Lungs	0.15 (15%)
Breasts	0.12 (12%)
Other tissues	0.30 (30%)

X ray examination

0.02- 0.05 mSv

0.03 mSv

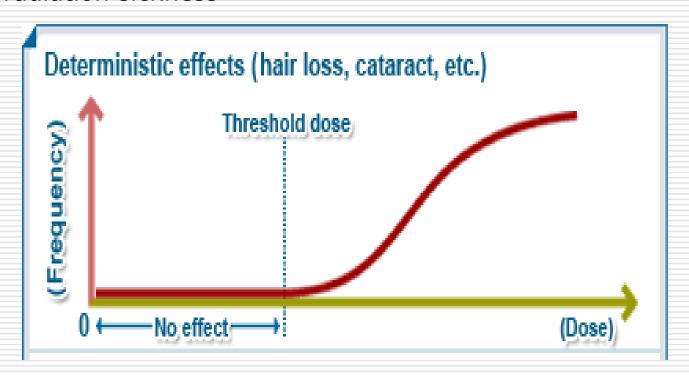
Radiation levels and their effects

Upper limit for Radiation Workers	50 mSv per year
Upper limit for general population	5 mSv per year
Visible blood changes	0.5 mSv per year
Lethal dose for 50% of individuals	500 mSv
Lethal dose for all	1 500 mSv
Radiation dose by one chest X ray examination	0.2 mSv
Radiation dose by one head CT scanning	11 mSv
Natural radiation in Croatia	2 mSv per year
Smoking	13 mSv per year

- --- DOSE SPEED radiation doses during 1sec
- very important to biological damages

Radiation by the Numbers

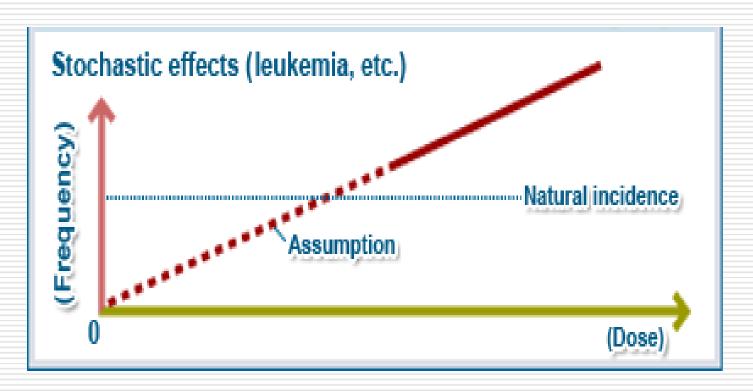
Certain kinds of imaging diagnostics use ionizing radiation, which is associated with an increased risk of cancer. Here are estimated radiation levels for some procedures:


SOURCE	ESTIMATED DOSE (MILLISIEVERTS)
Chest X-ray	0.01-0.1 mSv
Mammogram	0.8 mSv
Head CT	2 mSv
Chest CT	8-10 mSv
Abdomen-pelvis	s CT 10mSv
Full-body scree	ning CT 12-25 mSv
World War II at	om bomb (mean) 20 mSv

Source: WSJ research

Biological effects of ionizing radiation

Deterministic (nonstochastic) effects


- ☐ the probability for damage depends on dose
- there is treshold dose
- somatic effects (appear only in irradiated person) development of radiation sickness

Biological effects of ionizing radiation

Stochastic effects

- are biological effectts, of which the probability to occur is the function of the dose;
- A treshold for such effect cannot be quantified!!!The damage appears for any dose.
- genetic effects (transfered to next generations) and development of cancer

COUNTERTHINK

