Biochemistry of Saliva, Teeth, and Dental Caries
Saliva

- Biological fluid, which bathes the oral cavity.

- Complex fluid produced by a number of specialized glands which discharge into the oral cavity.

- Contains electrolytes and proteins.

 - The same electrolytes (minerals in the blood and other body fluids) that carry an electric charge.

- The total volume of saliva produced each day in adults is 500 to 1500 ml.
Many salivary components do multiple functions. For example, amylase in addition to being an enzyme also inhibits precipitation of calcium salts.
Source and characteristics of saliva

<table>
<thead>
<tr>
<th>Source</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>The parotid glands</td>
<td>• produce serous secretions only, devoid of mucin</td>
</tr>
<tr>
<td>The submandibular and sublingual glands</td>
<td>• secrete both serous and mucinous secretions</td>
</tr>
<tr>
<td>The viscosity of the submandibular saliva</td>
<td>• usually decreases with increasing flow rate</td>
</tr>
<tr>
<td>Salivary secretion</td>
<td>• stimulated by smell and taste.</td>
</tr>
</tbody>
</table>
Composition of saliva

- Volume 500-1500 ml/day
- Rate of flow 0.1–0.25 ml/min
- pH 5.6-7.2 (mean 6.5)
- Water content 97-99.5%

General
- Total protein 1-6 g/ L
- Mucin 2.7 g / L
- Statherins
- Proline rich proteins
- Hystatins

Proteins
- α-amylase
- Cholinesterase
- Lipase
- cretin-kinase aspartate-transaminase
- Lactat dehydrogenase 113-609 U/L
- Adenosine deaminase
- Lysozyme
- carbonic anhydrase

Enzymes
- Glucose 0.5-1 mmol/L
- Total lipid 20 mg/dl
- Cholesterol 7.5 mg/dl (0.19 mmol/L)
- Urea
- Uric acid
- Creatinine
- lactate

Metabolites
- Potassium 10-40 mMol/L
- Sodium 2-50 mMol/L
- Calcium 1-2.5 mMol/L
- Magnesium 0.2–0.6 mMol/L
- Phosphate 2-22 mMol/L
- Chloride 5-50 mMol/L

Electrolites
- Cortisol 3-40 nmol/L*
- Dehydroepiandrosterone 1.5±0.3 nmol/L
- Free testosterone 18.71±5.01 pg/mL
- Insulin

Hormones

*depends on method
Organic compounds

Major carbohydrate in saliva
- glucose (0.5-1 mmol/L)

Hormones, immunoglobulins and enzymes
- may be detected in saliva in trace amounts

The total protein concentration in saliva
- less than 1% of that in plasma

Important proteins of saliva
- mucin, statherins, histatins, proline rich proteins (PRPs), lactoferrin and immunoglobulin A (IgA) and different enzymes: carbonic anhydrase, lingual lipase, amylase, peroxidase
Salivary Mucins

Characteristics
- major proteins of the saliva
- exist in two forms
 - MG1 and MG2
- Glycoproteins with negatively charged groups
 - sialic acid and sulfate
- hydrophilic and trap water resulting in high elasticity
- The oligosaccharide residues bind to bacterial proteins
 - preventing them from adhering to soft tissue and enamel

Function
- **Tissue coating**
 - Protective coating about hard and soft tissues
 - Primary role in formation of acquired pellicle
 - Concentrates antimicrobial molecules at mucosal interface
- **Lubrication**
 - Align themselves with direction of flow increases lubricating qualities
Salivary enzymes

<table>
<thead>
<tr>
<th>The main enzymes: amylase, lingual lipase</th>
<th>• digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonic anhydrase</td>
<td>• buffering action of saliva</td>
</tr>
<tr>
<td>Peroxidases</td>
<td>• bactericidal function</td>
</tr>
</tbody>
</table>
| Lysozyme | • antimicrobial action
 • bactericidal effect: by breaking down the muramic acid present in bacterial cell walls |
| Enzymes and other proteins | • synthesized by the **acinar cells**. |
Amylase

The major salivary enzyme

Secretion: The parotid gland

It cleaves the alpha-1,4-glycosidic bonds of starch

The products are small quantities of maltose (disaccharide) and smaller sized polysaccharides.

The optimum pH is 6.

Its action is short lived as the food passes into stomach (lower pH inactivates the enzyme)

When there is any obstruction to the salivary ducts or inflammation of the glands (as in mumps), the salivary amylase passes into the blood and elevates the concentration and activity of serum amylase.

Weak antibacterial properties

Buffering property
Other proteins

Immunoglobulin A (IgA)
- secretory antibodies (present in body secretions)
- effective against cariogenic bacteria
- IgA concentrations-low in some persons with dental caries

Histidine rich proteins
- antifungal activity
- reduces the bacterial attacks
- reduce precipitation of calcium phosphate
- help in the formation of the enamel pellicle
- Slows down the loss of calcium and phosphate ions from the teeth

Lactoferrin
- chelates the iron.

Statherins
- keep the supersaturated calcium phosphate in the ductal saliva from crystallizing
- The supersaturated calcium phosphate is necessary for the maintenance of enamel integrity.
- bind calcium and prevent precipitation of calcium phosphate (probability of formation of dental calculus is reduced).
- help in lubrication.
Inorganic Components

Saliva contains the most common electrolytes of the body fluids: sodium, potassium, chloride and hydrogen carbonate.
Formation of the teeth

Close association of inorganic (mineral) crystal material, and organic fibrous (polymer) structures.

Both components playing a structural role in the tooth.

https://www.webmd.com/oral-health/picture-of-the-teeth#1
Inorganic composition of the teeth

Hydroxyapatite (97% of enamel and 70% of dentin)
- the major form of calcium in all the tooth tissues

Crystalline forms of calcium phosphate

Amorphous (noncrystalline) calcium phosphate
- in the dentin.

The phosphate ions constitute the major component of the ions present in the crystal arranged in octahedral channels running through the crystal structure

- Two-thirds of these channels are occupied by calcium ions.
- One-third of the channels are occupied by negative fluoride ions (fluoroapatite)

TRACE ELEMENTS In human enamel,

- iron, zinc, copper, and manganese
Organic Components

Collagen

- the major protein component of calcifying tissues like bone, dentin and cementum.
- Each polypeptide chain about 1000 amino acid residues.

The structural proteins and apatite of teeth need to be synthesized in an integrated way.

In teeth the collagen fibrils are suited to the roles of supporting three-dimensional stress, and of orienting and supporting apatite crystals.

Other Proteins in Teeth

- the extracellular matrix also contains
 - glycoproteins (GP)
 - glycosaminoglycans (GAG)
- These proteins are associated with the dentin and basal plate.
Proteins of Enamel

Amelogenin

- A low molecular weight extracellular matrix protein.
- About 90% of all enamel protein.
- Hydrophobic residues on the outside.

- The 27 amino acid functions as a calcium channel.
- Phosphorylation of a serine residue of the protein opens the calcium channel.
- Calcium ions zoom through and funneled to the mineralization front.

Function of amelogenin

- It also influences the development of cementum.

Proteins of Dentin

Specific for teeth and bone

- Collagen
 - Forms the lattice for mineralization
- Non-collagen proteins
 - Acidic glycoproteins and proteoglycans
 - Control initiation and growth of crystals.

Three major proteins specific for dentin

- Dentin phosphoryn
- Dentin matrix protein
- Dentin sialoprotein

- These proteins play an important role in control of mineralization.

Other proteins of enamel

- Ameloblastin
- Enamelin
- Tuftelin
Mineralization

- a process by which inorganic calcium and phosphate are deposited on the organic matrix.
- **Osteoblasts** synthesize and secrete organic matrix, which is then mineralized.
- **Osteoclasts** are involved in bone resorption.
- **Alkaline phosphatase**
 - the key enzyme in the process of mineralization
 - liberates phosphate from substrates
 - ionic concentration is increased to supersaturation level
 - leading to deposition of apatite
DENTAL CARIES (dental cavities or tooth decay)

Caries (Latin) = "decay".

• Local destruction of tooth tissues with demineralization.
• In the pits and fissures of premolar and molar teeth, bacterial fermentation of residual food leads to acid production.

Bacteria
Streptococcus mutans

• Proliferates because of:
 • decrease in saliva flow
 • the pH of the plaque drops to ≤5
• Forms dextran and causes a sticky plaque, trapping bacteria, calcium and phosphate ions
THE CAUSES OF DENTAL CARIES

Sucrose
- low-molecular-weight disaccharide
- rapidly metabolized by the plaque flora
- fermentation produces lactic acid
- drop in the pH to ≤ 5 at the Point of interface between plaque and enamel

Other
- poor oral hygiene
- chewing of tobacco
- exposure to lead, cadmium (metals that can replace calcium)
- Iodine is found to be able to penetrate enamel, dental pulp and periodontal tissues
- frequent eating (lower pH)
Prevention of Caries

oral hygiene

regular dental examination and cleaning 6 months

Consummation of high molecular weight starch

fluoride (2-4 \(\mu \text{g} \) daily)

 • a. Effect on hard tissues to modulate mineralization, demineralization and re-mineralization.
 • b. Effect of cariogenic bacteria by altering their metabolism.
 • c. Effect on soft tissues to modify the development of teeth

sugar free salivary stimulants
Fluorosis-state of art

Fluorosis

- blood concentration of fluoride up to 50 μg /100 ml (normal up to 4 μg /100 ml).

Joint defects

- increased breakdown of bone matrix
- increased excretion of hydroxyproline in urine is enhanced.

Fluorinated toothpaste?

- >2 mg/l
 - chronic intestinal upset, gastroenteritis, loss of appetite and loss of weight

- >5 mg/L
 - mottling of enamel, stratification and discoloration of teeth

- >20 mg/L
 - toxic, leading to alternate areas of osteoporosis and osteosclerosis, with brittle bones

Ingested fluoride accumulates in bones

Constantly follow the recommendations of the profession in terms of recommending the use of fluoride in prevention, consumption and treatment