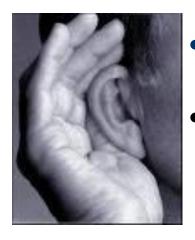
VIBRATION AND SOUND

Sanja Dolanski Babić

Vibration and sound wave



- How do we hear?
- Because of interaction of sound waves and our ears

infrasound, sound (20 Hz – 20 kHz), ultrasound

Sound wave – transfer of mechanical energy by vibration of elastic medium particles

Simple harmonic motion

Elastic force

$$F_{el} = -kx$$

II Newton's law F = ma

$$F = ma$$

$$m\frac{d^2x}{dt^2} = -kx$$

$$m\frac{d^2x}{dt^2} = -kx \qquad m\frac{d^2x}{dt^2} + kx = 0$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$
$$\omega = \frac{2\pi}{T}$$

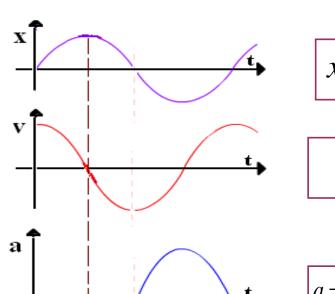
$$x(t) = A\sin\omega_0 t$$

Starting values:x=0 za t=0

Own angular frequency

$$\omega_0 = \sqrt{\frac{k}{m}}$$

Simple harmonic motion



$$x = A$$

$$x(t) = A\sin\omega_0 t$$

$$v = 0$$

$$v = \frac{dx}{dt} = \omega_0 A \cos \omega_0 t$$

$$a = -\omega_0^2 A$$

$$a = -\omega_0^2 A$$

$$a = \frac{d\mathbf{v}}{dt} = -\omega_0^2 A \sin \omega_0 t$$

$$E = \frac{m\mathbf{v}^2}{2} + \frac{kx^2}{2}$$

$$E = \frac{m\omega_0^2 A^2}{2}$$

$$E = \frac{m\omega_0^2 A^2}{2}$$

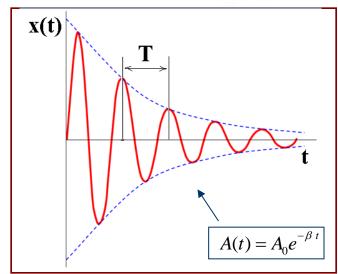
Damped oscillations

Friction force:

$$F = -r \cdot \mathbf{v}$$

- Energy is decreasing
- Amplitude is decreasing

$$m\frac{d^2x}{dt^2} = -kx - rv$$



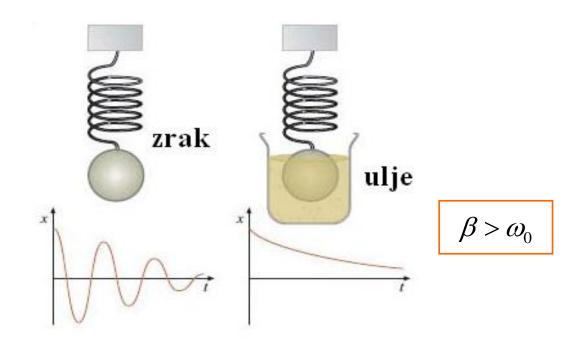
$$X(t) = A_0 e^{-\beta t} \sin \omega t$$

$$A(t) \qquad \beta = \frac{r}{2m}$$

Damping coefficient

 Smaller than angular frequency of simple pendulum motion

$$\omega = \sqrt{\omega_0^2 - \beta^2}$$



Forced harmonic oscillations

 The object could be forced to harmonic oscillation by action of external harmonic force

$$F = F_0 \sin \omega t$$

 The object will oscillate with the frequency of external force.

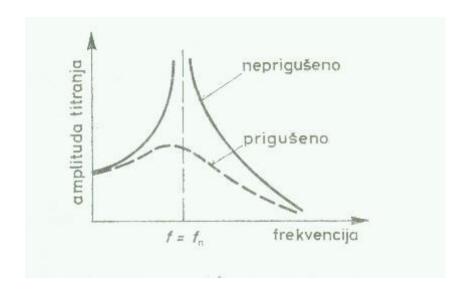
$$m\frac{d^2x}{dt^2} = -kx - rv + F_0 \sin \omega t$$

The general solution is very complex.

$$x(t) = A(\omega) \sin \omega t$$

• Amplitude depends of frequency ratio ω/ω_0 and of damping coefficient β

Maximum of amplitude –resonant frequency



• Resonant frequency

$$\omega_r = \sqrt{\omega_0^2 - 2\beta^2}$$

• For β =0: $\omega_r = \omega_0$

Summary

oscillation - periodical motion

harmonic oscillations	frequency ω	amplitude A	
free	ω_0	$A = A_0$	
damped	$\omega = \sqrt{\omega_0^2 - \beta^2}$	$A(t) = A_0 e^{-\beta t}$	
forced - resonance	$\omega_r = \sqrt{\omega_0^2 - 2\beta^2}$	$A(\omega)$	

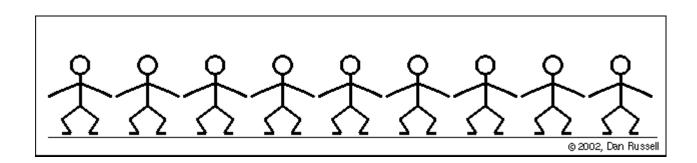
$$E = \frac{m\omega_0^2 A^2}{2}$$

Sound waves – transfer of mechanical energy

Mechanical waves

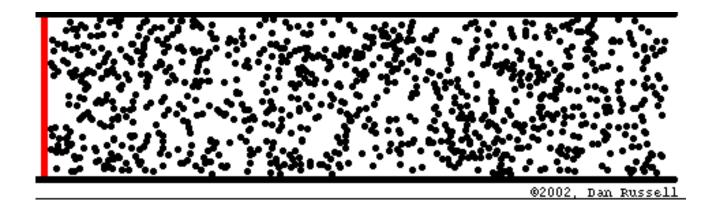
Signs, Daniel A. Russell

puls



preuzeto: http://paws.kettering.edu/~drussell/Demos/waves-intro/waves-intro.html

Nature of sound wave



- **source** body which vibrates in elastic medium
- Energy is spreading with the speed

$$v = \frac{\lambda}{T} = \lambda \cdot f$$

Acoustic pressure

Intensity of sound wave

$$I = \frac{E}{St}$$

$$E = \frac{m\omega_0^2 A^2}{2}$$

$$m = \rho \cdot V$$

$$I = \frac{\omega_0^2 A^2 \rho V}{2}$$

$$E = \frac{m\omega_0^2 A^2}{2}$$
$$m = \rho \cdot V$$

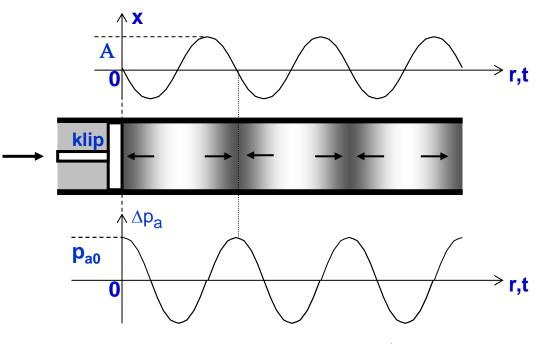
$$I = \frac{\omega_0^2 A^2 \rho \mathbf{v}}{2}$$

intensity depends of source properties (native frequency and *amplitude*) and elastic medium (acoustic impedance, $Z = \rho v$)

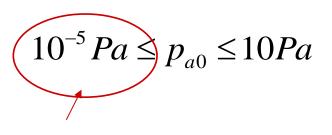
Wave equation

- periodic in time and space

$$x(r,t) = A\sin 2\pi (\frac{t}{T} - \frac{r}{\lambda})$$



$$\Delta p_a(r,t) = p_{a0} \sin 2\pi \left(\frac{t}{T} - \frac{r}{\lambda} - \frac{\pi}{2}\right)$$



$$I = \frac{p_{a0}^2}{2Z}$$

Intensity level

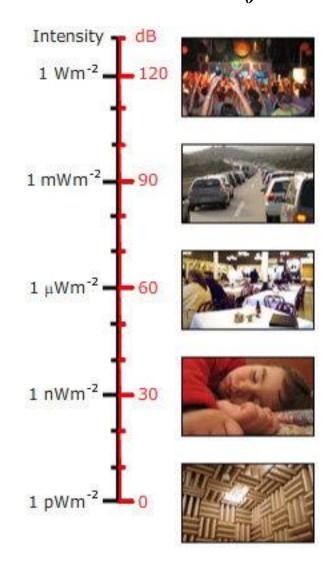
 the range of intensities which the human ears can detect is very large (10⁻¹² W/m² – 1 W/m²) and absolute intensity is not needed in considerations

• intensity level:
$$\beta = 10 \log \frac{I}{I_0}$$

- referent intensity: 10⁻¹² W/m²
 - treshold of hearing on f=1000 Hz
 - unit: dB

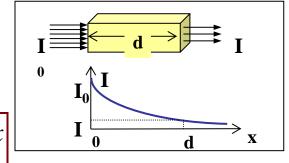
Table intensity for tone on 1 kHz $\beta = 10 \log \frac{I}{I_0}$

sound	I/Wm ⁻²	β/dB
treshold of hearing	10 ⁻¹²	0
rustling leaves	10 ⁻¹¹	10
whisper	10 ⁻¹⁰	20
normal conversation	10 ⁻⁸	40
busy street traffic	10 ⁻⁶	60
vacuum cleaner	10-4	80
front rows of rock concert	10-2	100
treshold of pain	1	120



Absorption of sound wave

- Interaction sound waves and matter
- Damped oscillation
- Amplitude is decreasing: $A=A_0e^-$



α – linear coefficient, depends of type of matter and frequency

 $I = I_0 e^{-2\alpha x}$

• Half thickness: $x_{1/2} \rightarrow I_0/2$

$$x_{1/2} = \frac{\ln 2}{2\alpha}$$

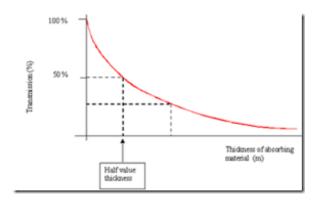
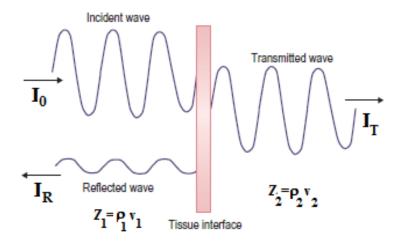


Table 1.5 Tissue thickness (in cm) to half intensity of ultrasound beam (-3 dB) for common clinical frequencies and materials

	1 MHz	3 MHz	5 MHz	10 MHz	20 MHz
Blood	17	8.5	3	2	1
Fat	5	2.5	1	0.5	0.25
Liver	3	1.5	0.5	-	-
Muscle	1.5	0.75	0.3	0.15	-
Bone	0.2	0.1	0.04	-	-
Polythene	0.6	0.3	0.12	0.6	0.03
Water	1360	340	54	14	3.4
Soft tissue (average)	4.3	2.1	0.86	0.43	0.21



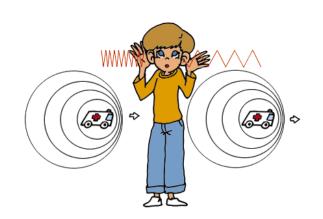
$$\alpha_1 = \alpha_2 = \mathbf{0}^{\mathbf{0}}$$

$$\frac{I_R}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2} \qquad \frac{I_T}{I_0} = \frac{4Z_1 Z_2}{(Z_2 + Z_1)^2}$$

- za $Z_1 \cong Z_2$ max. transmission!
- za $Z_1 >> Z_2$ or $Z_2 >> Z_1$ max. reflection!
- $Z(air) = 430 \text{ kg/m}^2 \text{s}$, $Z(water) = 1480000 \text{ kg/m}^2 \text{s}$

Doppler effect

□ Consequence of <u>relative movement of</u> <u>source or detector</u> of sound is virtual change of frequency of the detected sound



□ approaching to the source ⇒ higher frequency

$$f_p = f_i \frac{\mathbf{v}_z + \mathbf{v}_p}{\mathbf{v}_z}$$

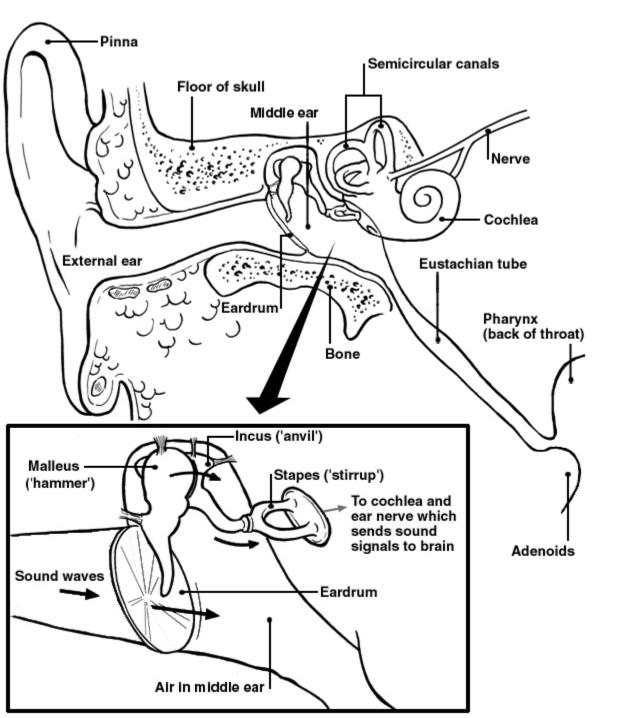
☐ to go away from the source

lower frequency

$$f_p = f_i \frac{\mathbf{v}_z - \mathbf{v}_p}{\mathbf{v}_z}$$

simultaneously approaching

$$\Delta f = f_0 \frac{\mathbf{V}_p - \mathbf{V}_i}{\mathbf{V}_z}$$

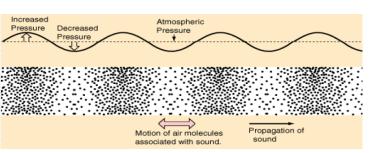


External ear – sound waves enter

Middle ear – amplification of sound waves

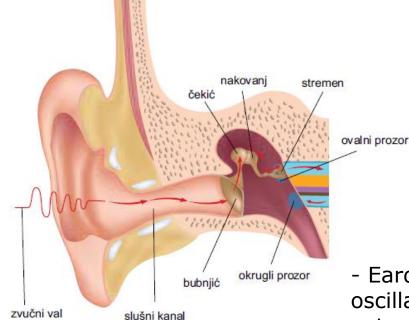
Inner ear – frequencies parsed, transduced to electrical impulse and sand to brain

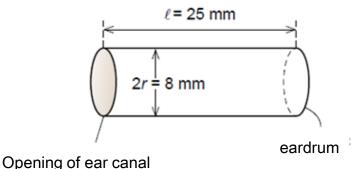
External ear



 the change of acoustic pressure

ear canal – tube closed on one side; 2.5 cm long – 0.8 diameter; the resonance frequency is 3.3. kHz (wave length – 10 cm)





- Eardrum transmits oscillations from the external to the middle ear

Displacement of eardrum at hearing threshold - 0.01 nm amplitude of pain - 11 mm

Compare! Diameter of cell ~ 10 mm in disco club (140 dB)

displacement of eardrum is 100 mm

Acoustic parameters - the physiological sensations

- intensity level
- frequency
- timber)

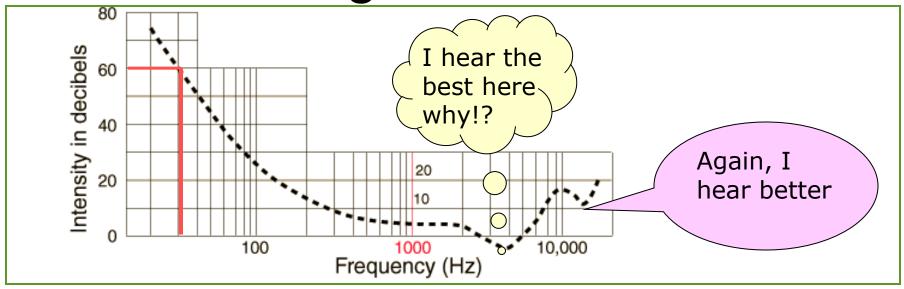
- loudness level
- sound pitch
- frequency spectrum sound quality (tone

Loudness level

▶ Weber-Fechnerov law(for 1000 Hz i $I_0 = 10^{-12} \text{Wm}^{-2}$):

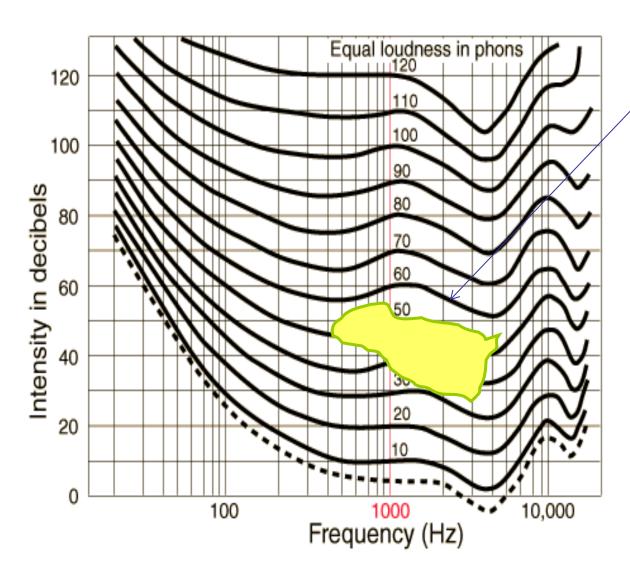
$$S = 10\log\frac{I}{I_0}$$

Loudness unit phon - for tone 1 kHz the change of intensity level for 10 dB results in loudness level change of 10 phons Hearing threshold



- hearing threshold for 1000 Hz -theory 0 dB, measured 4 dB
- discrimination on low frequencies tone of 30 Hz needs the intensity of 60 dB
- maximal sensitivity of the ear on 3500 to 4000 Hz because the resonance in auditory canal
- can be modeled as closed tube resonances of the auditory canal

Isophonic curves equal loudnes curves



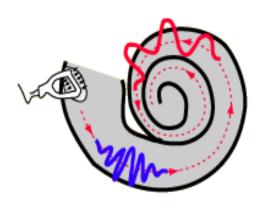
- the interval of speech:
- frequency: 0,25 3 kHz
- loudness: 30 60 phon
- best hearing: 3,5-4
 kHz

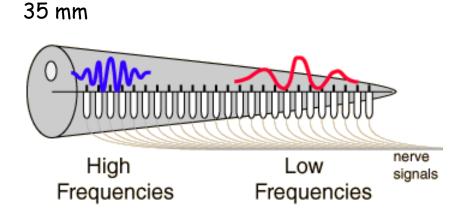
- we do not hear sounds of:
- blood flow in head,
- displacement of the jaw joint
- Brownian motion of air molecules

Pitch of a sound

□ Tone pitch ~ log₂ f

- sensation of pitch explained with theory of place and resonance of sensation cells - high resolution of our ear for pitch tone
- satisfactory explanation of sensation of relative pitch tone, but not the explanation of absolute pitch
- discrimination of pitches is high between 0.08 i 10 kHz dependent

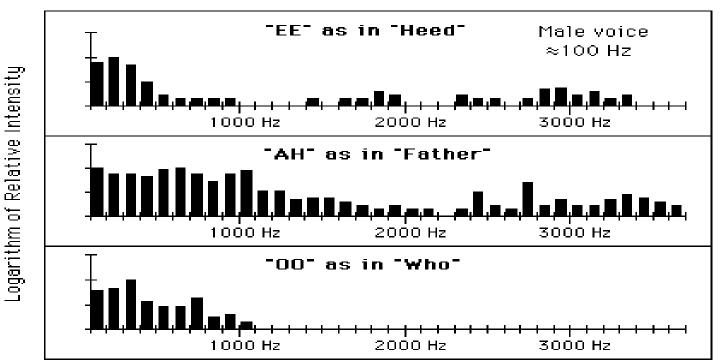




Timbre – sound quality

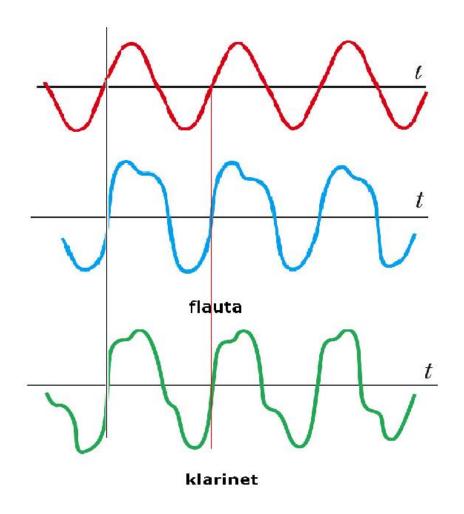
- our ear distinguishes sounds of same pitch and loudness
- we distinguish among different instruments

Harmonic Content Differences in Yowel Sounds



Sound waves: tones and noise

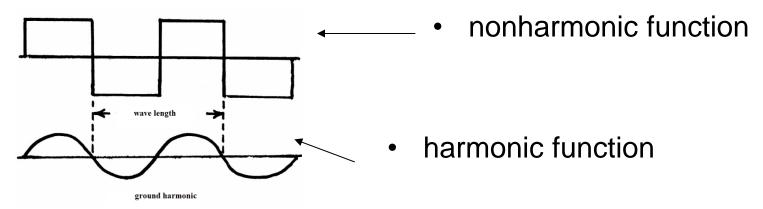
• tones: simple – harmonic



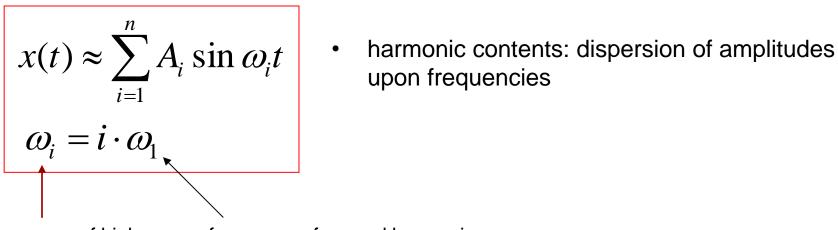
equal frequencies

complex - nonharmonic

Nonharmonic tones



 Fourier theorem – nonharmonic function can be represented by sum of harmonic functions



frequency of higher • frequency of ground harmonic harmonic

Fourier theorem

$$x(t) \approx \sum_{i=1}^{n} A_i \sin \omega_i t$$
 $\omega_i = i \cdot \omega_1$

 distribution amplitudes per harmonics

